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Abstract. Reconstructions of the late-Holocene climate rely

heavily upon proxies that are assumed to be accurately dated

by layer counting, such as measurements of tree rings, ice

cores, and varved lake sediments. Considerable advances

could be achieved if time-uncertain proxies were able to

be included within these multiproxy reconstructions, and if

time uncertainties were recognized and correctly modeled for

proxies commonly treated as free of age model errors.

Current approaches for accounting for time uncertainty are

generally limited to repeating the reconstruction using each

one of an ensemble of age models, thereby inflating the final

estimated uncertainty – in effect, each possible age model

is given equal weighting. Uncertainties can be reduced by

exploiting the inferred space–time covariance structure of

the climate to re-weight the possible age models. Here, we

demonstrate how Bayesian hierarchical climate reconstruc-

tion models can be augmented to account for time-uncertain

proxies. Critically, although a priori all age models are given

equal probability of being correct, the probabilities associ-

ated with the age models are formally updated within the

Bayesian framework, thereby reducing uncertainties. Numer-

ical experiments show that updating the age model probabil-

ities decreases uncertainty in the resulting reconstructions,

as compared with the current de facto standard of sampling

over all age models, provided there is sufficient information

from other data sources in the spatial region of the time-

uncertain proxy. This approach can readily be generalized to

non-layer-counted proxies, such as those derived from ma-

rine sediments.

1 Introduction

Large-scale climate reconstructions over the last two mil-

lennia rely heavily on climatic proxies that are annually re-

solved, assumed to be precisely dated by layer counting,

and overlap with instrumental climate data – including tree

rings, varved sediments, and annually layered ice cores (e.g.,

NRC, 2006; Jones et al., 2009). There would be consider-

able advantages if time-uncertain proxy records were able

to be included within robust reconstruction methodologies

that allowed for accurate propagation of uncertainties. Such

methodologies would allow for radiometrically dated prox-

ies, such as many marine or lacustrine sediment archives and

speleothems, to be included in high-resolution reconstruc-

tions. These lower-resolution, time-uncertain records may

preserve more low-frequency climate variability than annu-

ally resolved proxies (e.g., Jones et al., 2009), and therefore

aid in identifying and characterizing multi-centennial to mil-

lennial scale climate variability over the late Holocene. Fur-

thermore, lower-frequency, time-uncertain proxies have the

potential to extend the time span of reconstructions, as prox-

ies like tree rings and corals are abundant for the last several

centuries but relatively sparse prior to the most recent mil-

lennium (e.g., Mann et al., 2008). Finally, inclusion of time-
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uncertain terrestrial and nearshore marine sediment records

will expand the spatial coverage of the proxy network.

There is well-established literature on modeling time-

uncertainty in δ18O observations from marine sediment cores

(e.g., Imbrie et al., 1984; Shackleton et al., 1990; Lisiecki

and Lisiecki, 2002; Huybers and Wunsch, 2004; Lisiecki

and Raymo, 2005). A common approach in this context

is to establish the age–depth relationship by maximizing

some similarity metric, such as a correlation, between time-

uncertain records (e.g., Lisiecki and Lisiecki, 2002; Lisiecki

and Raymo, 2005) or between a time-uncertain record and

a known, often orbital, signal (e.g., Imbrie et al., 1984;

Shackleton et al., 1990). The maximization is often con-

ducted under constraints or penalties designed to reflect the

scientific understanding of the sedimentation process, and

to guard against over-fitting (e.g., Martinson et al., 1982;

Brüggemann, 1992; Lisiecki and Lisiecki, 2002; Lisiecki and

Raymo, 2005). Alternatively, depth-derived age modeling

emphasizes sedimentation or accumulation models in estab-

lishing an age–depth relationship (e.g., Shaw, 1964; Huybers

and Wunsch, 2004). These studies generally involve averag-

ing numerous, time-uncertain proxy series to explore tempo-

ral variability (Lisiecki and Raymo, 2007; Huybers and Wun-

sch, 2004), or to explore spatial variability at distinct time

slices (e.g., Curry and Oppo, 2005; Hughes et al., 2014). In

contrast, late-Holocene climate field reconstruction aims to

infer climate variability in both space and time from both

time-certain and time-uncertain proxy observations.

Time-uncertain proxies have in some cases been included

in reconstructions of large-scale, late-Holocene climate in-

dices or fields (e.g., Moberg et al., 2005; PAGES2k Consor-

tium, 2013). In general, however, the age model errors asso-

ciated with the time-uncertain proxies has have been explic-

itly addressed: a “best” age model is selected and then time

uncertainties are ignored. Recent attempts to account for age

model uncertainties (Anchukaitis and Tierney, 2013; Tierney

et al., 2013; Comboul et al., 2014) generally involve repeat-

ing an analysis over possible age models, thereby inflating

the uncertainty associated with the reconstruction.

Constraints on the age–depth models for time-uncertain

observations can be achieved by exploiting information

about the spatial and temporal covariance of the climate

system. For example, the possible age models for a set

of proxy records can be constrained by assuming that

well-documented global-scale events, such as magnetic re-

versals, glacial terminations, or tephra layers (Haflidason

et al., 2000), are simultaneous within a specified tolerance

across the different time-uncertain records. Such assump-

tions reflect the intuition that large-scale climate features are

recorded at different locations at “close” to the same time,

where the extent to which events are permitted to be asyn-

chronous is given by estimates of dating uncertainties, and

reflected in tolerances or penalty functions.

Here we formalize the use of time-uncertain proxies within

a Bayesian hierarchical model for climate field reconstruc-

tion. Our approach is a data-derived compromise between

the two end members defined by the selection of an opti-

mal age model by some metric, or by treating all age models

as equally likely. The statistical model is hierarchical, and

model fitting exploits conditional dependencies by sequen-

tially updating estimates of the climate conditional on the

currently selected age model, and then updating the probabil-

ities associated with members of an ensemble of age–depth

models based on the current estimate of the climate. That is,

inference on the spatiotemporal covariance structure of the

climate process informs the extent to which similar signals

in proxy records at different locations should be constrained

to occur at similar times, while these time-uncertain obser-

vations likewise inform estimates of both the climate process

and parameters describing the space–time covariance struc-

ture of the climate.

Our development focuses on banded climate archives that

feature dating errors caused by skipping or over-counting

layers. Measurements on tree rings are the best known and

most used of these climate archives is tree ring records,

where replication and cross-dating is generally adequate to

address possible miscounting of rings. Other climate archives

that form annual bands, such as ice cores, varved lake sedi-

ments, corals, and some speleothems, are not sampled with

sufficient replication to safely assume that the age models are

free of errors. We will assume throughout that correspond-

ing to each banded, time-uncertain record there is a set of

M age–depth models (ADMs) that, a priori, are treated as

equally likely. We do not consider how this ensemble is con-

structed, but note that our results are generally applicable.

Likewise, although we will work with the established method

BARCAST (Bayesian Algorithm for Reconstructing Climate

Anomalies in Space and Time), as described by Tingley and

Huybers (2010a, b) and used subsequently in Tingley (2012),

Werner et al. (2013), and Tingley and Huybers (2013), our

results are readily transferable to any other Bayesian hierar-

chical model for inferring past climate.

Section 2 provides background information on BAR-

CAST, and Sect. 3 describes the technical modifications

to BARCAST required to update the probabilities of the

ADMs. Results of numerical experiments characterizing and

illustrating the advantages of our approach are presented in

Sect. 4. Although the development below is specific for sim-

plicity, the core idea of updating the probabilities associated

with time-uncertain proxy data by including an ADM level

within a Bayesian hierarchical model is general, and discus-

sion provided in Sect. 5 focuses on how the core ideas can be

extended, including to radiometrically derived ADMs.

2 Bayesian hierarchical models for climate field

reconstructions

Bayesian hierarchical modeling is a natural framework for

inferring past climate from proxy observations (Tingley
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et al., 2012), and involves disentangling assumptions made

about the climate system from assumptions made about the

distribution of observations consistent with a given climate

state. More generally, hierarchal modeling allows sophisti-

cated models to be developed via the specification of a se-

ries of simpler, interlinked conditional probability statements

(Berliner et al., 2000; Wikle et al., 2001; Gelfand et al., 2003;

Gelman et al., 2003).

In the paleoclimate context, Bayesian hierarchical model-

ing proceeds by first specifying, at the process level, a simple,

parametric model describing the stochastic variability of the

target climate process. The data level of the hierarchy then

describes the observations conditional on the state of the cli-

mate process – that is, forward models (Evans et al., 2013)

are the natural way to describe the relationship between prox-

ies and climate within the Bayesian framework. Finally, prior

distributions, encoding pre-analysis beliefs, must be speci-

fied for all unknown parameters to provide mathematical clo-

sure. These priors can be more or less informative, as dictated

by the analyst (e.g., Gelman et al., 2003; Tingley and Huy-

bers, 2010a, b).

BARCAST (Tingley and Huybers, 2010a, b) models the

target climate process as a first-order autoregressive [AR(1)]

process in time, with multivariate normal innovations fea-

turing exponentially decaying spatial covariance. Although

based on a relatively simple process-level model, numerous

studies have shown that BARCAST works well in practice

for reconstructing temperature variations (e.g., Tingley and

Huybers, 2010a; Werner et al., 2013, 2014; Tingley and Huy-

bers, 2013). Mathematically, the processes level takes the

form

Ct+1−µ= α (Ct −µ)+ εt

εt ∼N (0,6) (independent)

6i,j = σ
2 exp

(
−φ|xi − xj |

)
,

(1a)

where Ct is a vector of the climate values at N spatial loca-

tions at time step t , µ is the overall mean of the process, and

the AR(1) coefficient α models temporal persistence. The in-

novations capture spatial persistence in the form of an ex-

ponential decrease of correlation as a function of separation

between locations xi and xj , with e-folding distance 1/φ. As

reflected in the process-level specification, the climate is per-

sistent in both time and space, and the spatial and temporal

sharing of information permitted by this persistence is crit-

ical in constraining age models for time-uncertain proxies.

The climate process C is latent, in the sense that it is never

observed without error.

At the data level, BARCAST specifies a separate linear

forward model for each type of observation:

O t = β0+β1 ·H t ·Ct + et

et ∼N (0,τ 2
· I ) (independent).

(1b)

The parameters (β0,β1,τ
2,H t ) are assumed to be differ-

ent for each type of observation (e.g., tree ring widths, ice

cores), but are often taken to be common for all observations

of a given type. Furthermore, the instrumental observations

are assumed to be unbiased and on the correct scale, so that,

for this type of observation, β0 = 0 and β1 = 1. The selec-

tion matrix H t is composed of zeros and ones, and selects

out at time step t the locations for which there are proxy ob-

servations of a given type. That is, each proxy observation

is assumed to be linear in the corresponding local, in time

and space, value of the climate. Inference on the parameters

and the latent climate process, proceeds via Markov chain

Monte Carlo (MCMC; e.g., Gelman et al., 2003). Although

for a discussion of technical details we refer the reader to

Tingley and Huybers (2010a), we note that a core principle of

MCMC is to estimate the joint probability distribution of all

unknowns by iteratively sampling from each unknown con-

ditional on the current values of all other unknowns. For ex-

ample, we draw from the distribution of the climate process,

conditional on the parameters, and then update the parame-

ters conditional on the climate

One of the main shortcomings of BARCAST, shared by

most other climate field reconstruction methods (Schneider,

2001; Smerdon et al., 2010, 2011; Luterbacher et al., 2004;

Pauling et al., 2006; Guillot et al., 2014), is the inability to in-

corporate data with dating uncertainty in a statistically rigor-

ous manner. As hierarchical models such as BARCAST are

specified through a series of simple probability statements

(Eq. 1a and b), they are naturally modular and amenable

to modification. In particular, the description of BARCAST

above can be viewed as conditional on the correct age model,

and can be generalized to include updating of the probabili-

ties associated with an ensemble of age models, conditional

on the climate.

3 Extending BARCAST to include time-uncertain

proxies

We focus on augmenting the basic BARCAST framework of

Tingley and Huybers (2010a) to permit inclusion of annual-

resolution, layer-counted proxies that feature ADM errors.

Layers may be miscounted when the annual bands are weak,

as can potentially occur in corals (Hendy et al., 2003), or

when hiatuses in the record are misdated (e.g., speleothem

data; Osete et al., 2012). An ensemble of possible ADM er-

rors is shown in Fig. 1: after a top section that is perfectly

dated, counting errors accumulate, leading to a mismatch be-

tween actual and estimated age. These timing errors accu-

mulate further down the core, leading to a substantial spread

in possible dates for the lowest layers. For the purposes of

exposition, and to simplify notation, we consider the case of

a single time-uncertain, layer-counted proxy; the formalism

can then be repeated for each time-uncertain proxy.
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3.1 Addressing miscounted layers

Associated with a single time-uncertain proxy record is an

ensemble of possible ADMs, denoted by {Tk,k = 1, . . .,M}.

The ensemble of ADMs is generated based on understand-

ing of the proxy archive, laboratory standards, and so forth,

and should reflect an honest assessment of possible uncer-

tainties. Here, we take the ensemble as given, and do not

consider how it was generated. Although there may be some

climate archives where the true ADM depends on the cli-

matic state, we ignore this potential complication. We as-

sume the M ADMs are a priori equally likely, and then seek

to update the conditional posterior probabilities associated

with the ADMs given the current draw of the climate and pa-

rameters, and use these probabilities at each iteration of the

MCMC to randomly select one of the ADMs. That is, we

define a categorical variable that corresponds to the possible

age models, and draw from its conditional posterior distri-

bution within the MCMC (Gelman et al., 2003; Tingley and

Huybers, 2010a).

We first re-write the data-level model of BARCAST for

the time-uncertain proxy. Whereas Eq. (1b) relates the set

of observations available throughout space at time t to the

concurrent climate field, here it is more convenient to relate

Os , the time series of the time-uncertain proxy at location

s, to Cs , the co-located time series of the estimated climate

process. In addition, we explicitly condition on the currently

selected ADM. The distribution of the vector of proxy obser-

vations conditional on the climate time series and a particular

ADM T then takes the form

Os |T ,Cs = β0+β1 ·3
T
s ·Cs + es

es ∼N (0,τ 2
· I ) (independent).

(2)

The vector es is a time series of independent normal errors at

location s (cf. et from Eq. 1b). Analogous to H t in Eq. (1b),

3T
s is a selection matrix of zeros and ones that picks out the

elements of the vector Cs corresponding to elements of Os ,

and is dependent on the ADM T .

Importantly, 3T
s represents the only dependence of either

the process or data levels on the ADM. The conditional pos-

terior required to update the probabilities on members of the

ensemble {Tk} is therefore the product of the likelihood of the

time series of proxy observations at location s conditional on

the climate and the selected ADM, and the prior probabili-

ties of the possible ADMs. The likelihood is proportional to

a multivariate normal probability density function, with di-

agonal covariance:

L(Os |T ,Cs)∝ exp

(
−

1

2τ 2

[
Os −

(
β0+β1 ·3

T
s ·Cs

)]T
×

[
Os −

(
β0+β1 ·3

T
s ·Cs

)])
. (3)

Assuming equal prior probabilities for the ADMs,

π (T = Tk)= 1/M , the conditional posterior probabili-

ties corresponding to the candidate ADMs {Tk} are then

p(T = Tk|Cs,Os)∝ L(Os |Tk,Cs) ·π (Tk) . (4)

At this point, the problem is in theory solved. At each itera-

tion of the MCMC, we sample the climate process and scalar

parameters as described in Tingley and Huybers (2010a), and

then select an ADM according to the conditional posterior

probabilities in Eq. (4). This results in a Bayesian age model

selection (BARCAST+AMS), whereby at each iteration of

the MCMC, an ADM is selected conditional on the data and

the current estimate of the climate state. In practice, the sam-

pler is “sticky”, in the sense that it is slow to explore the full

range of the joint climate and ADM probability distribution.

Intuitively, the selected ADM exerts a strong control on the

subsequent estimate of the climate, and the conditional pos-

terior for the ADMs subsequently gives large probability to

retaining the current ADM. As a result, the MCMC quickly

hones in on the small subset of the ADMs that are most com-

patible with the initial estimate of the climate. The MCMC

then wanders around this local optimum, and does not effi-

ciently explore other local optima in the joint posterior. This

well-known problem in MCMC methods, termed the “wait-

ing time dilemma” (Wong and Liang, 1997), occurs when the

MCMC sampler cannot escape a local optimum in reasonable

time.

3.2 Parallel tempering for ADM selection

To produce more rapid mixing of the BARCAST+AMS –

that is, a more rapid exploration of the full probability dis-

tribution – we turn to parallel tempering and Metropolis-

Coupled MCMC (Altekar et al., 2004; Earl and Deem, 2005;

Li et al., 2009). In parallel tempering, several instances of the

MCMC sampler are run in parallel, each at a different “tem-

perature”. Intuitively (and in two dimensions), MCMC seeks

to explore the topography of a mountain range via a random

walk, spending time at each location in proportion to the ele-

vation. “Heating” of a chain promotes the more rapid explo-

ration of the topography by reducing differences in elevation.

Formally, a heated chain requires a modification to the like-

lihood term in the posterior (Altekar et al., 2004):

pθ (T = Tk|Cs,Os)∝ L(Os |Tk,Cs)θ ·π (Tk) , (5)

where θ ∈ [0,1] is the “inverse temperature” parameter. For

θ = 1 (no heating) the normal posterior is recovered. De-

creasing θ reduces differences in the likelihood, and in the

limit as θ→ 0, the likelihood is unity for each ADM. In other

words, heating increases the influence of the prior, and as we

assume a flat prior, chains with smaller values of θ (more

heating) will more rapidly explore the probability space.

A crucial drawback of heating a chain is that the stationary

distribution of the MCMC is then not correct, in the sense

that it does not match the target posterior probability dis-

tribution. Metropolis-Coupled MCMC (MC3; Altekar et al.,
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2004; Earl and Deem, 2005) offers a solution by coupling

several MCMC chains with different levels of heating to an

unheated chain. The heated chains permit rapid exploration

of the probability space, while the unheated chain benefits

from increasing mixing while retaining the correct limiting

distribution (Wong and Liang, 1997; Li et al., 2009). The

chains are usually organized by increasing temperature, and

only neighboring chains are coupled to one another (Earl and

Deem, 2005).

Coupling is achieved by permitting state-swapping be-

tween the parallel chains. After a predetermined number of

iterations of the Gibbs sampler, the states (current values of

all parameters, including the climate process and selected

ADM) of two neighboring chains are permitted to swap in

a Metropolis step (e.g., Gelman et al., 2003). In the current

context, we are most interested in encouraging mixing of the

ADMs, so we heat the chains solely in the likelihoods of the

ADM selection. As a result, only the posterior probabilities

of the ADMs for each chain enter into the Metropolis ratio.

The probability of swapping the states of two chains j and k,

with heatings θj and θk , conditional on the current estimates

of the climate, parameters, and age models is (Altekar et al.,

2004)

p(j ↔ k|Tj,k,Cj,k,O)=

min

(
1,
∏
s

pθk
(
Tj |Cj ,O

)
·pθj (Tk|Ck,O)

pθj
(
Tj |Cj ,O

)
·pθk (Tk|Ck,O)

)
. (6)

The product is over all locations with time-uncertain proxies,

and note that Tj,k,Cj,k,O are all dependent on the spatial

location s. Although formally the full state of the MCMC,

including all estimates for the climate and model parame-

ters (including the selected ADM) is swapped between the

two chains, it is equivalent and more efficient to instead swap

their temperatures.

The heating and coupling procedure allows more diverse

ADMs to be selected by the heated chains, while the un-

heated chain retains the correct stationary distribution. The

result is a more rapid exploration of the probability space by

the unheated chain, as coupling with the heated chains results

in more rapid movement between local optima in the prob-

ability space. All posterior summaries are then based solely

on the unheated chain.

The coupling requires specification of a number of param-

eters. To set the smallest of the heating parameters in the ex-

periments below, we first ran several chains at a wide range

of fixed heatings and without switching to identify θmin, the

largest value of θ that still permits rapid exploration of the

possible ADMs. We observe that the transition from almost

no diversity in the selected ADM to sampling many of the

ADMs is abrupt, and the exact value is not critical provided

it is below this threshold. We then run at least six chains

(depending on computational resources) with swapping en-

abled, using θmin for the hottest chain. Following Kofke

(2002), intermediate values are specified to follow a geomet-

ric series. For six chains and a minimum inverse temperature

θmin = 0.05, we set θ ≈ (1,0.55,0.30,0.17,0.09,0.05).

A final technical issue concerns the convergence of the un-

heated chain after a successful swap with a heated chain. The

heated chains do not have the same stationary distributions

(Li et al., 2009) as the unheated chain, and the MCMC re-

quires several iterations to converge to the correct (unheated)

stationary distribution. We therefore discard from the anal-

ysis a number of samples of the unheated chain following

each successful switch. For the numerical experiments be-

low, we find by monitoring convergence of the error variance

for the proxy, τ 2
P , that discarding the first fifty iterations suf-

fices (cf. Sect. 2.b.3 of Tingley and Huybers, 2010a). Param-

eter swaps are then proposed every 100 iterations. Since not

all proposed swaps are accepted, this leaves enough samples

for evaluation even when discarding the first fifty MCMC

steps after a switch of the unheated chain. As with other pa-

rameters controlling the Metropolis coupling, applications in

other settings may require different values.

There is a tradeoff between the allocated resources (num-

ber of chains) and the convergence of the unheated chain

following a successful swap, as the closer the temperatures

of the two swapped states are, the faster they will converge

to their respective stationary distributions following a swap.

Although implementation using the MPI (Message Passing

Interface, www.mpi-forum.org) protocol could in principle

be used on a distributed system, we have not tested this, and

interprocess communication could induce an extra overhead

caused by network latency.

Measuring convergence for Metropolis-Coupled parallel

tempering is non-trivial, due to the additional computation

burden of the numerous coupled chains. We therefore split

the single, long unheated chain into a number of segments,

and assess convergence using the potential scale reduction

factor (R̂ from Gelman et al., 2003) between these segments

for each parameter. For the experiments presented below, R̂

was usually below 1.05 for all parameters. Further evidence

that the chains converge in reasonable time is provided by

the fact that process-level parameters do indeed approach the

true values specified in the simulations below. Finally, simu-

lation experiments that include the true ADM within the can-

didate ensemble feature rapid convergence of the MCMC to-

wards the true ADM and ADMs similar to it, regardless of

the initial ADM, suggesting a reasonable exploration of the

probability space.

4 Simulation experiments

We use two sets of numerical experiments to explore our abil-

ity to simultaneously constrain the ADMs of time-uncertain

proxies and estimate the climate using BARCAST+AMS.

Data are constructed using the BARCAST process and data-

level models (Eqs. 1a and 1b); parameter values (Table 1) are

constant across all experiments. To prove the concept while

www.clim-past.net/11/533/2015/ Clim. Past, 11, 533–545, 2015
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Table 1. Model parameters for the experiments. Proxy 1 is time-

certain and Proxy 2 features an uncertain age–depth model. The

signal-to-noise ratio is set to about 0.25 (cf. Smerdon, 2012). The

measurement noise for the instrumental data is given by τI .

Process Proxy 1 Proxy 2

α 0.6 τ2
P,1

0.4 τ2
P,2

0.4

µ 0.0 β0,1 0 β0,2 0

σ 2 0.9 β1,1 0.5 β1,2 0.5

φ−1 1000 km

τI 0.05

limiting computational burden, we consider a small spatial

domain and a limited number of proxy records. Experiments

are run over 1300 time steps (years), with high-precision “in-

strumental” data available over the most recent 150 years.

A mix of time-certain and time-uncertain “proxies” are avail-

able over the entire time span of the experiments. The time-

uncertain proxies consists of annually resolved data, but with

a 2 % probability (Comboul et al., 2014; McKay and Kauf-

mann, 2014) of miscounted layers. An ensemble of 499 age–

depth models is created by randomly over- or undercounting

each layer from the top of the proxy archive. In contrast to

real world reconstructions, it is possible to explicitly include

the correct ADM within the ensemble for these experiments.

The experiments are evaluated on the annual timescale, us-

ing the average cross correlation and root mean square error

(RMSE) between the target and the reconstruction ensem-

ble. In addition, we compare nominal and empirical cover-

age rates of estimated uncertainty intervals (Li et al., 2010;

Tingley and Huybers, 2013) and calculate the continuous

ranked probability score (CRPS; Gneiting and Raftery, 2007;

Herbach, 2000), as they are more suitable evaluations of

ensemble estimates. Positive (negative) differences between

nominal and empirical coverage rates are indicative of un-

certainty intervals that are too narrow (wide). CRPS, in con-

trast, is a combined measure of the sharpness (uncertainty) of

the reconstruction and the actual coverage rates of the uncer-

tainty intervals. The spatially or temporally averaged CRPS

can be broken into two parts: the average reliability score

(Reli), which estimates how well the nominal coverage rates

of the ensemble reconstructions correspond to the empirical

ones, and the potential average CRPS (CRPSpot), which char-

acterizes the spread of the ensemble or the width of the uncer-

tainty intervals. All three measures – CRPS, avgCRPS_pot

and avgReli – are in the units of the evaluated variables, and

thus enable quick comparison with the reconstructed signal.

They thus do not offer a simple threshold to discern between

success and failure, in contrast to the coefficient of efficiency

and the reduction of error (Cook et al., 1994), where positive

values indicate a “skillful” reconstruction.

Although the coefficient of efficiency and the reduction of

error are often used to assess reconstructions, they are not

Figure 1. Trace plots of ADMs used in Sect. 4.1. Shown is the mis-

match of layer number (experimental date) vs. true date, for each of

the ensemble of ADMs. A perfect ADM would be a straight hor-

izontal line at zero. (a) All ADMs. (b) All ADMs (black), ADMs

with posterior probability> prior probability (blue), 20 ADMs clos-

est to target (red).

proper scoring rules (Gneiting and Raftery, 2007), and are

therefore not suitable for evaluating ensemble predictions –

even if they are convenient and widely used.

4.1 One time-certain and one time-uncertain proxy

The first set of experiments features instrumental data over

the 150 most recent time points, one time-certain proxy, and

one proxy that is time-uncertain save for the overlap with the

instrumental records. The set of ADMs associated with the

time-uncertain proxy is shown in Fig. 1. We run three sets

of experiments, with the two proxies collocated, or separated

by roughly three-fourths, or twice the spatial de-correlation

length scale of 1000 km. Reconstructions are carried out us-

ing both the algorithm outlined above (BARCAST+AMS)

and randomly sampling from the prior distributions of the

ADMs within the original BARCAST algorithm.

To evaluate how the heating (Sect. 3) influences the pos-

terior distribution of the ADMs, we calculate the distribu-

tion of L1 distances between the true ADM and each of

the 500 ADMs that form the ensemble. In the left panel of

Fig. 3 we show the distribution of L1 distances for all ADMs

(“weighted” by the flat prior), and in the right panel the L1

distances of the drawn ADMs, weighted by the posterior dis-

tribution of the ADMs. The cooler chains each converge to

a single (but different) ADM that is close to optimal, but fail

to adequately explore the probability space. The two warmest

chains, in contrast, switch almost constantly, leading to a flat-

ter posterior distribution of selected ADMs across L1 dis-

tance. Note that the L1 distance to the target ADM is not

a quantity that the BARCAST+AMS algorithm evaluates di-

rectly – instead BARCAST+AMS selects an ADM by eval-

uating the likelihood of the observations under each possible
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ADM and the current estimate of the climate, leveraging the

signal that is common to the two proxy series.

Coupling the chains permits a more reasonable exploration

of the ensemble of ADMs (Fig. 4). The unheated chain ex-

plores ADMs with progressively larger L1 deviations from

the true ADM as the separation between the proxies in-

creases. When the two proxies are co-located, the unheated

chain puts most of the probability mass on a small number

of ADMs, but successfully wanders between them. The pos-

terior distribution of L1 distances is narrower and centered

on lower values as compared with the prior, indicating that

the estimated climate signal provides a strong constraint on

the distribution of possible ADMs consistent with the data.

As the separation between the proxies increases, there is less

information to constrain the ADMs for the time-uncertain

proxy, and the posterior distribution of L1 distances for the

unheated chain becomes broader. These features are similar

whether or not the correct ADM is included in the ensemble

of possible ADMs for the time-uncertain proxy.

Results of the three experiments are summarized in Ta-

ble 2, using both BARCAST+AMS (implemented using

MC3) and randomly selecting from the ADMs within BAR-

CAST. As expected, all measures for both analyses indicate

a better reconstruction at the location of the time-certain

proxy, where results are comparable between the two anal-

ysis choices.

The value of updating the probabilities associated with the

ADMs within BARCAST+AMS can be seen when compar-

ing performance metrics at the location of the time-uncertain

proxy (Table 2). When the two proxies are separated by about

three-fourths of the decorrelation length scale, the more tar-

geted ADM selection afforded by the Metropolis-Coupled

MCMC results in a larger cross correlation and reduced

RMSE as compared with random ADM selection, while

CRPS and its two components are each smaller. Metropolis-

Coupled MCMC therefore results in narrower ensemble re-

constructions with better coverage probabilities. The em-

pirical coverage rate of 90 % uncertainty intervals is in all

cases marginally high at the location of the time-uncertain

proxy, and the width of 90 % uncertainty intervals at the time-

uncertain proxy location is narrower when estimated using

BARCAST+AMS as compared with random sampling of the

ADMs.

A visual representation of the ability of BARCAST+AMS

to learn about the ADMs is provided by trace plots of

the prior ensemble of ADMs, color-coded to indicate those

ADMs that feature larger posterior probability than prior

probability. When the two proxies are separated by about

three-fourths the decorrelation length scale, only a small sub-

set of the ADMs feature increased posterior probability, and

their spread is narrow as compared with the original ensem-

ble (Fig. 1). These results clearly demonstrate the improve-

ments afforded by formally updating the probabilities asso-

ciated with the ADMs. We note that the ability to learn about

the posterior distribution of the ADMs is a strong function

Figure 2. Spatial domain of the reconstruction experiments, with

a superimposed map of Europe to provide a scale. Experiments are

purely simulated, and are not related to the climate of this region.

Stars mark locations of proxies used in Sect. 4.2.

of the amount of nearby (as measured by the spatial decorre-

lation length scale) information that is available to constrain

the climate at the location of the time-uncertain proxy. In-

deed, when the time-certain proxy is more than twice the spa-

tial correlation length from the time-uncertain proxy there is

little gain over random ADM selections (Table 2). This illus-

trates the need for a shared signal between the proxies that

can be used to correct for the misdating in either. The ex-

act source of the shared signal is not important, be it through

spatial closeness as constructed here, or through a long-range

teleconnection.

4.2 No instrumental data and all proxies

time-uncertain

The second experiment features no instrumental data, and

all eight proxy records are time-uncertain (Fig. 2). Further-

more, the data-level parameters of Eq. (1b), τ 2
P , β0, and β1,

are treated as known and fixed at their true values. The goal

of the experiment is to demonstrate the feasibility of simul-

taneously estimating, from strictly time-uncertain informa-

tion, the process-level parameters that govern the space–time

covariance structure of the climate field (α, µ, φ, σ 2), the

climate field itself, and the probabilities associated with the

ADMs. That is, we seek to estimate the climate field and

its covariance properties from time-uncertain information,

while simultaneously exploiting the space–time covariance
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Table 2. Experimental results with one time-certain and one time-uncertain proxy record, with instrumental data present, for both BAR-

CAST+AMS and random ADM selection (rand). Results are shown at the location of the time-certain proxy (“Certain”) and the location of

the time-uncertain proxy (“ADM”). The spatial decorrelation length scale is 2000 km, and the separation between the proxies varies between

experiments. The reconstructions are evaluated over the pre-instrumental period only. The standard deviation of the local target climate signal

is about 1.3.

Dating Separation Crosscorr RMSE CRPS CRPSpot Reli 90 % cov 90 % width

BARCAST+AMS

Both 0 0.64 1.04 0.39 0.39 6.17 E-3 0.93 2.55

ADM 751 km 0.45 1.29 0.49 0.49 3.05 E-3 0.92 3.05

Certain 0.61 1.06 0.43 0.42 4.03 E-3 0.89 2.44

ADM 2084 km 0.23 1.46 0.56 0.56 3.03 E-3 0.92 3.47

Certain 0.57 1.11 0.43 0.42 6.18 E-3 0.91 2.62

rand

Both 0 0.63 1.02 0.38 0.38 6.23 E-3 0.92 2.54

ADM 751 km 0.33 1.42 0.54 0.54 3.28 E-3 0.93 3.44

Certain 0.61 1.05 0.43 0.42 4.65 E-3 0.89 2.42

ADM 2084 km 0.24 1.53 0.58 0.57 4.07 E-3 0.94 3.75

Certain 0.57 1.11 0.43 0.43 3.92 E-3 0.91 2.64
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Figure 3. Left panel: distribution of all available ADMs by L1 distance. Right panel: distribution of drawn ADMs with heated chains without

state swapping. The beige (dark red) corresponds to the coolest (hottest) chain. Results are for the two-proxy experiment (Sect. 4.1) with

intermediate spatial separation.

of the climate to constrain the ADMs. Although idealized,

this experimental setup is useful in assessing the plausibil-

ity of reconstructing annually resolved climate from time-

uncertain proxies.

Both BARCAST+AMS and random sampling of ADMs

provide adequate estimates of the mean, µ, and the AR(1)

persistence parameter, α (Fig. 5). Although both methods

overestimate σ 2, the partial sill (Banerjee et al., 2004) of

the spatially covarying innovations, and underestimate the

inverse-range parameter φ, the distributions resulting from

BARCAST+AMS are marginally closer to the true values

(Fig. 5). As discussed in Zhang (2004), Tingley and Huybers

(2010a), and Mannshardt et al. (2013), separate inference of

these two parameters is notoriously difficult, and their pos-

terior draws are tightly correlated (see Fig. 9 of Tingley and

Huybers, 2010a). In the current setting, with only eight noisy,

time-uncertain proxies, the noise is such that separate, tight

estimates on the range and partial sill are not possible. We

note, however, that predictive performance in spatial settings

tends to be only weakly impacted when using an inverse-

range parameter that is smaller than optimal (Kaufman and

Shaby, 2013).

Even in the absence of time-certain observations, BAR-

CAST+AMS allows the spatial covariance of the climate sys-

tem to update the probabilities of the possible ADMs. Indeed,

the posterior distribution of L1 distances to the true ADM is

narrower and peaked at lower values as compared with the

prior distribution (Fig. 6), indicating that the estimated cli-

mate in fact places a strong constraint on the ensemble of

possible ADMs.
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parameter values from Table 1.

Evaluations of the reconstructions carried out using BAR-

CAST+AMS and random ADM selection within BARCAST

provide further evidence of the benefits of updating the prob-

abilities for the ADMs (Fig. 7). All six panels show the re-

sults for BARCAST+AMS (left, blue) and random ADM se-

lection (red, right) for all grid cells. Results at the proxy lo-

cations are highlighted by crosses, and the results from the

rest of the grid are summarized using a box plot. For BAR-

CAST+AMS, the cross correlation and RMSE at the proxy

locations are close to the values expected for time-certain

data, given the signal-to-noise ratio of the proxies, and are su-

perior to values under random ADM selection. That is, BAR-

CAST+AMS successfully counteracts some of the increased

uncertainty that results from dating errors at the proxy loca-

tions (crosses in Fig. 7). At locations where the reconstruc-

tion requires spatial interpolation, the distinction between the
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Figure 6. Histogram of prior (white) and posterior (blue) distribu-

tion of L1 distances to the true ADMs, for the experiment with only

time-uncertain proxies. The histograms bin distances over all eight

time-uncertain proxies.

two analyses in terms of correlations and RMSE is less pro-

nounced. At these locations, a larger fraction of the total un-

certainty arises from the spatial mapping, as opposed to dat-

ing uncertainty, so the benefits afforded by constraining the

ADMs via BARCAST+AMS are less pronounced.

At all locations, both BARCAST+AMS and random ADM

selection result in reasonable empirical coverage rates for

nominally 90 % uncertainty intervals, and the reliability

scores (Reli) are comparable between the two analyses. That

is, both methods result in uncertainty intervals with reason-

able coverage probabilities. However, BARCAST+AMS re-

sults in lower CRPSavg and CRPSpot, with the distinction

more pronounced at the proxy locations, indicting that the en-

semble inferences from BARCAST+AMS are more sharply

peaked than those from random ADM selection, despite fea-

turing similar coverage probabilities.

5 Discussions and extensions

We have described and implemented an extension of

a Bayesian hierarchical model for climate field reconstruc-

tions that accounts for uncertainties due to misspecified age–

depth models in annually resolved proxy records. Although

we have focused on a particular type of time-uncertainty

(miscounting of annual layers) and the BARCAST recon-

struction algorithm of Tingley and Huybers (2010a), the

methodology we outline is broadly applicable. To achieve

adequate mixing in the MCMC, we make use of Metropolis-

Coupled MCMC with parallel tempering (Altekar et al.,

2004; Earl and Deem, 2005). These techniques increase com-

putational demands, by a factor given roughly by the number

of coupled chains, but are necessary to ensure adequate ex-

ploration of the probability space.

As demonstrated with simulation experiments, our method

places higher posterior probability on ADMs with low L1

distance to the correct ADM (Figs. 1 and 4). Moreover, re-

constructions that update the probabilities associated with the

ADMs based on the current draw of the climate feature bet-

ter score and skill metrics than reconstructions that feature

random ADM selection (Fig. 7, Table 2).

A number of useful extensions to the general framework

we have proposed are possible. Many proxy archives, such

as marine sediment cores, do not form annual layers. Proxies

derived from these archives, such as δ18O, TEX86, UK
′

37 , and

Mg /Ca, are generally measured as an average over a depth

increment of sediment. The time boundaries of each incre-

ment are, in turn, determined by an ADM that is generally

constrained using radiometric dating. As Tingley and Huy-

bers (2010a) discuss how to extend BARCAST to account

for proxies that average the climate process in time and/or

space, we here focus on how to adapt the updating of the age

models in this case. In the context of annually resolved, layer-

counted proxies, the matrix 3T
s in Eq. (3) features a single

one in each row that picks out the climate value correspond-

ing to each proxy observation, and is otherwise composed of

zeros. If each proxy observation instead represents an aver-

age over some number of time points, then each row of 3T
s

features a segment composed of the corresponding averag-

ing weights. Both the weights themselves, and their positions

within the rows of 3T
s , are determined by the ADM. Pro-

vided that the averaging inherent to each proxy observation

can be specified from the selected ADM, rows of the selec-

tion matrices 3T
s can be altered on the basis of the currently

selected ADM, and the analysis then proceeds as above.

The procedure can likewise be adapted if the natural time

increments of the problem are not annual, e.g., for marine

sediment data that often feature multi-decadal to centennial

resolution. The underlying process-level model (for the evo-

lution of the climate variables) would then need to be adapted

to the new question of interest, and we note that the station-

arity assumption of the currently specified process level will

not hold, for example, when considering glacial–interglacial

timescales.

Our presentation has assumed the a priori existence of an

ensemble of possible ADMs for each time-uncertain proxy.

In many cases, such an ensemble of ADMs is not avail-

able with the proxy record – though recent efforts to de-

fine standards for proxy metadata suggest that the original

dating information, such as radiometric ages and uncertain-

ties, be included along with the proxy observations (see the

selection criteria outlined in PAGES2k Consortium, 2014).

Recent work in radiocarbon dating has focused on stochas-

tic modeling of the sedimentation process, and development

of Bayesian models to constrain possible depositional histo-

ries, and therefore ADMs, conditional on a set of imperfect

age control points (e.g., Ramsey, 2008; Blockley et al., 2007;

Blaauw and Christen, 2011). Given dating information, any

of the existing ADM construction algorithms, such as BA-

CON (Blaauw and Christen, 2011), could then be used to

produce an ADM ensemble.

Clim. Past, 11, 533–545, 2015 www.clim-past.net/11/533/2015/



www.manaraa.com

J. P. Werner and M. P. Tingley: Time uncertainties and BARCAST 543

Figure 7. Experimental results with eight time-uncertain proxies and no instrumental data. Blue: results using BARCAST+AMS. Red: results

using random age model selection. Results for the proxy locations are shown as crosses, while results at other locations, where there are no

observations, are displayed with box plots.

Alternatively, the actual algorithm that generates ADMs

from the age constraints could be embedded within the cli-

mate reconstruction algorithm. As opposed to updating the

probabilities associated with each member of the ADM en-

semble at each iteration of the MCMC, the analysis would

instead proceed by generating a new ADM at each iteration

of each coupled chain, and then accepting or rejecting this

proposal based on a Metropolis (Gelman et al., 2003) step.

One advantage of embedding the ADM generating mecha-

nism within the reconstruction is an increase in the number

of candidate ADMs included in the model. As a new ADM

is generated at each iteration of the MCMC for each of the

parallel chains, a larger number of possible age models are

included in the analysis.

There are many potential benefits to including time-

uncertain proxy records within annually resolved, late-

Holocene climate field reconstructions. Inclusion of time-

uncertain observations would increase the number of proxy

records and the diversity of proxy types available to such

analyses, and increase the spatial coverage of the proxy net-

work. Furthermore, lower-resolution, time-uncertain records

may permit improved inference on low-frequency climate

variability (e.g., Jones et al., 2009; Kaufman, 2014), and have

the potential to extend the time span of reconstructions.

Climate constructions are only as reliable as the appro-

priateness of the assumptions they rely upon. Advances in

climate reconstructions and uncertainty quantification may

be achievable via the development of simple, flexible, and

scientifically reasonable forward models for commonly used

proxies (Evans et al., 2013). Efforts in that regard so far have

generally focused on annually resolved time-certain proxies

(Tolwinski-Ward et al., 2010, 2014). Our results point to the

benefits of extending this line of inquiry to time-uncertain

proxies as we have demonstrated that they can be included in

multi-proxy reconstructions in a statistically rigorous manner

that fully propagates uncertainties.

The Supplement related to this article is available online

at doi:10.5194/cp-11-533-2015-supplement.
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